scVAE
Release 2.1.4

Christopher Heje Gronbech, Maximillian Fornitz Vording

Jun 30, 2020

1 Contents
1.1 UserGuide
1.1.1 Installing scVAE
1.1.2 UsingscVAE
1.1.2.1 Datasets
1.1.2.2 Training a model . .
1.1.2.3 Evaluating a model
1.1.2.4 Examples
1.1.3 Tutorial
1.2 License
1.3 Programming Interface
1.3.1 Datamodule.
1.3.2 Models module
1.3.3 Analyses module
1.3.4 Argument defaults
1.4 References
Python Module Index
Index

CONTENTS

O 00 00] WU W W WWwWWw

scVAE, Release 2.1.4

scVAE is a command-line tool for modelling single-cell transcript counts using variational auto-encoders.

scVAE was developed by Christopher Heje Grgnbech and Maximillian Fornitz Vording with Christopher continuing
its development. The methods used are described and examined in Grgnbech et al. (2020).

CONTENTS 1

https://github.com/chgroenbech
https://github.com/maximillian91

scVAE, Release 2.1.4

2 CONTENTS

CHAPTER
ONE

CONTENTS

1.1 User Guide

scVAE model count data, primarily single-cell gene transcript counts, using variational auto-encoders (Kingma and
Welling, 2014; Rezende et al., 2014).

1.1.1 Installing scVAE

scVAE requires Python 3.6-3.7, which can be installed in several ways, for example, using Miniconda.

With Python in place, scVAE can be installed using pip:

$ python3 -m pip install scvae

1.1.2 Using scVAE

In general, scVAE is used in the following way:

$ scvae S$SCOMMAND S$SDATA_SET

where SCOMMAND can be analyse (data analysis), t rain (model training), or evaluate (model evaluation and
analysis). SDATA_SET is a path to a data set file or a short name for a data set.

By default, data are placed and cached in the subfolder data/, models are saved in the subfolder models/, and
analyses are saved in the subfolder analyses/.

In the following, the most relevant options are described. Use the help option to list all options for each command:

$ scvae SCOMMAND —-help

1.1.2.1 Data sets

Several data sets are already included in scVAE:
* Macosko—-MRC: GSE63472.
e 10x-MBC: 1.3 Million Brain Cells from E18 Mice from 10x Genomics.
— 10x-MBC-20k: 20 000 sampled cells.

* 10x-PBMC-PP: Nine data sets of purified PBMC populations from 10x Genomics as specified in Grgnbech et
al. (2020).

https://realpython.com/installing-python/
https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63472
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://www.10xgenomics.com
https://support.10xgenomics.com/single-cell-gene-expression/datasets/

scVAE, Release 2.1.4

¢ 10x—-PBMC-68k: Fresh 68k PBMCs (Donor A) from 10x Genomics.

* TCGA-RSEM: “transcript expression RNAseq - TOIL RSEM expected_count” data set from the TCGA Pan-
Cancer (PANCAN) cohort.

Data sets will be cached in the data directory, which defaults to data/. This can be changed using the option
——data-directory (or —D).

Be aware that it might take some time to load and preprocess the data the first time for large data sets. Also note that
to load and analyse the 10x-MBC data set, 47 GB of memory is required (32 GB for the original data set in sparse
representation and 15 GB for the reconstructed test set in dense representation).

The default model can be trained on, for example, the 10x-PBMC—PP data set like this:

$ scvae train 10x-PBMC-PP

Custom data sets

scVAE can read Loom files, and it can read a dense data matrix from a TSV file or a sparse one from a HDFS file
without further configuration. As an example, a data set in Loom format can be imported and modelled in the following
way:

$ scvae train data_set.loom

The TSV files can be compressed using gzip, but each row should represent a cell or sample and each column a gene
(for the reverse case, see below). If a header row and/or a header column are provided, they are used as gene IDs/names
and/or cell/sample names, respectively.

For Loom files, scVAE follows Loompy’s conventions: each column represent a cell or sample and each row a gene.
Cell or sample names are specified using the column attribute Ce11ID (or just Cell), and the row attribute Gene is
used for gene names.

HDFS5 files should include a single directory containing arrays for the sparse matrix (with names as for SciPy’s
CSR/CSC sparse matrix format: data, indices, indptr, shape). Arrays for example/cell and feature/gene
names are also supported with a varieity of naming conventions: for example, barcodes, cells, samples,
examples for the former; genes and features for the latter. If either name array or both are present, scVAE will
try to orient the matrix to match their dimensions.

scVAE also supports the following formats (supplied using the ——format option):
e 10x: Output format for 10x Genomics’s Cell Ranger.
¢ gtex: Format for data sets from GTEXx.

* matrix_ebf: (gzip compressed) TSV file with cells/samples/examples as rows and gene/features as columns
(examples-by-features).

e matrix_fbe: (gzip compressed) TSV file with gene/features as rows and cells/samples/examples as columns
(features-by-examples).

The last of these formats can be used to read a TSV file, which is in reverse order of the default case:

$ scvae train data_set.tsv.gz --format matrix_fbe

Using the Loom format, included cell types and batch indices can also be imported without further configuration by
using the column attributes “ClusterName” and “BatchID”, respectively.

Cell types for other formats can be imported in TSV format by instead providing a JSON file with a values field
with the filename for the read counts, a 1abels field with the filename the cell types, and format field with the
format.

4 Chapter 1. Contents

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/fresh_68k_pbmc_donor_a
https://xenabrowser.net/datapages/?dataset=tcga_expected_count&host=https%3A%2F%2Ftoil.xenahubs.net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Pan-Cancer%20(PANCAN)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Pan-Cancer%20(PANCAN)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://loompy.org
http://linnarssonlab.org/loompy/conventions/index.html
https://gtexportal.org/home/index.html
https://en.wikipedia.org/wiki/JSON

scVAE, Release 2.1.4

A JSON file for a GTEx data set would look like this:

{

"values": "GTEx_Analysis_2016-01-15_v7_RNASeQCvl.1.8_gene_reads.gct.gz",
"labels": "GTEx_v7_Annotations_SampleAttributesDS.txt",
"format": "gtex"

Naming this file gtex . json, the GTEx data set can then be imported and modelled:

$ scvae train gtex.json

Withheld data

Any data set can be split into a training, a validation, and a test set using the ——split—-data-set option:

$ scvae train S$SDATA_SET —--split-data-set

Then, the training set is used to train the model, the validation set is used for early stopping as well as finding the best
model parameters, and the test set is used when evaluating the model.

The data set can be split either randomly (random) or in the sequence in which it already is' (sequential). This
is done by specifying either value using the option ——splitting-method:

’$ scvae train SDATA SET --split-data-set --splitting-method random

The fraction of the data set used for the training and validation sets is set using the option
--splitting-fraction:

’$ scvae train SDATA_SET --split-data-set --splitting-fraction 0.9

This option also determines the fraction of the training and validation sets used when training a model. The above
command will then split the data sets into training, validation, and test sets using a 81 %- 9 %-10 % split.

1.1.2.2 Training a model

The command train is used to train a model on a data set:

$ scvae train SDATA SET

By default, a VAE model with a Poisson likelihood function, two-dimensional latent variable, and one hidden layer of
100 units will be trained on the specified data set for 200 epochs with a learning rate of 104,

The default model can be changed by using the following options:
e —m: The model type, either VAE or GMVAE.
¢ —r: Likelihood function (or reconstruction distribution):

- poisson,

negative_binomial,
— zero_inflated_poisson,

- zero_inflated_negative_binomial,

! With the first part becoming the training set, the second part the validation set, and the remaining part the test set.

1.1. User Guide 5

scVAE, Release 2.1.4

— constrained_poisson,

bernoulli,

gaussian, and
— log_normal.

e —k: The threshold for modelling low counts using discrete probabilities and high counts using a shifted likeli-
hood function (denoted by k.« in Grgnbech et al., 2020). This turns the likelihood function into a corresponding
piecewise categorical likehood function.

e —qg: The latent prior distribution. For the VAE model, this can only be a normal isotropic Gaussian distribu-
tion (gaussian) or one with unit variance (unit_variance_gaussian). For the GMVAE model, this
can either be a Gaussian-mixture model with a diagonal covariance matrix (gaussian_mixture) or a full
covariance matrix (full_covariance_gaussian_mixture). Note that a full covariance matrix should
only be used for simpler GMVAE models.

e ——prior-probabilites-method: Method for how to set the mixture coefficients for the latent prior
distribution of the GMVAE model. They can be fixed to either uniform values (uniform) or inferred values
from labelled data (infer), or they can be learnt by the model (1earn).

e —1: The dimension of the latent variable.

¢ —H: The number of hidden units in each layer separated by spaces. For example, -H 200 100 will make both
the inference (encoder) and the generative (decoder) networks two-layered with the first inference layer and the
last generative layer consisting of 200 hidden units and the last inference layer and the first generative layer
consisting of 100 hidden units.

e —K: The number of components for the GMVAE (if possible, this is inferred from labelled data, but it can be
overridden using this option).

e —w: The number of epochs during the start of training with a linear weight on the KL divergence (the warm-up
optimisation scheme described in Grgnbech et al., 2020). This weight is gradually increased linearly from 0 to
1 for this number of epochs.

* ——batch-correction: Perform batch correction if batch indices are available in data set (currently only
possible with Loom data sets).

The training procedure can be changed using the following options (only applicable to the t rain command):
e —e: The number of epochs to train the model.

e ——learning-rate: The learning rate of the model. The model is optimised using the Adam optimisation
algorithm (Kingma and Ba, 2015).

A GMVAE model with a negative binomial likelihood function, a 100-dimensional latent variable, two hidden layers
of each 100 units, and 200 epochs using the warm-up scheme is trained for 500 epochs on the 1 0x-PBMC—PP data
set like this:

$ scvae train 10x-PBMC-PP -m GMVAE -1 100 -H 100 100 -w 200 -e 500

Trained models are saved to the subdirectory models/ by default. This can be changed using the option
—--models—-directory (or —M).

6 Chapter 1. Contents

scVAE, Release 2.1.4

1.1.2.3 Evaluating a model

The command evaluate is used to evaluate a model on a data set:

$ scvae evalaute SDATA_SET

Note the model has to have been trained already on the same data set.

The model is specified in the same way as when training the model, and the model will be evaluated at the last epoch
to which it was trained. If withheld data were used, the model will also be evaluated at the early-stopping epoch and
epoch with the most optimal marginal log-likelihood lower bound (if available). A number of analyses are conducted
of the models and results, and these saved in the subdirectory analyses/. This can be changed using the option
—-—analyses-directory (or —A). If you want the tool to perform all available analyses, you can use this option
and argument: ——included-analyses all.

Cells can be clustered and cell types can be predicted using the option ——prediction-method. Currently only
k-means clustering (kmeans) is supported. The GMVAE clusters cells and predict cell types using its built-in density-
based clustering by default.

To visualise the data sets or latent spaces thereof, these are decomposed using a decomposition method. By default,
this method is PCA. This can be changed using the option ——decomposition-methods, and as the name implies,
multiple methods can be specified: PCA (pca), ICA (ica), SVD (svd), and +-SNE (t sne).

Decompositions of the data sets and of the latent values as well as predictions and the latent values themselves are also
saved to compressed TSV files in the same directory.

The GMVAE model trained in the previous section is evaluated with PCA and -SNE decomposition methods like this:

$ scvae evaluate 10x-PBMC-PP -m GMVAE -1 100 -H 100 100 -w 200 —--decomposition-—
—methods pca tsne

1.1.2.4 Examples

To reproduce the main results from Grgnbech et al. (2020), you can run the following commands:

¢ Combined PBMC data set from 10x Genomics:

$ scvae train 10x-PBMC-PP —--split-data-set -m GMVAE -r negative_binomial -1 100 -
—H 100 100 -w 200 -e 500

$ scvae evaluate 10x-PBMC-PP --split-data-set -m GMVAE -r negative_binomial -1_
100 -H 100 100 -w 200 --decomposition-methods pca tsne

¢ TCGA data set:
$ scvae train TCGA-RSEM —--map-features —--feature-selection keep_highest_variances,
—5000 --split-data-set -m GMVAE -r negative_binomial -1 50 -H 1000 1000 -e 500
$ scvae evaluate TCGA-RSEM —--map-features —-feature-selection keep_highest_
—variances 5000 --split-data-set -m GMVAE -r negative_binomial -1 50 -H 1000_
1000 --decomposition-methods pca tsne

1.1. User Guide 7

scVAE, Release 2.1.4

1.1.3 Tutorial

Say you have a data set consisting of:

* single-cell transcript counts a file called "t ranscript_counts.tsv.gz" with genes as rows and cells as
columns, and

* associated cell types in file called "cell_types.tsv".

To load these, you make a JSON file with the following contents:

{

"values": "transcript_counts.tsv.gz",
"labels": "cell types.tsv",
"format": "matrix_ fbe"

(See Custom data sets for more loading options.)
You then save the JSON file in the same directory as the TSV files with a memorable name like "data_set. json".

To load and split this data set with scVAE and train a GMVAE model with a Poisson distribution on the training set,
you run the following command in the same directory:

’$ scvae train data_set.json —--split-data-set -m GMVAE -r poisson

(See Training a model for more model options.)

You evaluate this model on the test set using the following command:

’$ scvae evaluate data_set.json —--split-data-set -m GMVAE -r poisson

The resulting plots are saved in a subfolder called "analyses". If you want -SNE plots, you use this command
instead:

$ scvae evaluate data_set.json --split-data-set -m GMVAE -r poisson —-decomposition-—
—methods tsne

1.2 License

Copyright 2017-2019 scVAE authors

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

8 Chapter 1. Contents

http://www.apache.org/licenses/LICENSE-2.0

scVAE, Release 2.1.4

1.3 Programming Interface

1.3.1 Data module

class scvae.data.DataSet (input_file_or_name, data_format=None, title=None, specifica-
tions=None, values=None, labels=None, example_names=None,
feature_names=None, batch_indices=None, feature_selection=None,
example_filter=None, preprocessing_methods=None, directory=None,

**kwargs)
Data set class for working with scVAE.

To easily handle values, labels, metadata, and so on for data sets, scVAE uses this class. Other data formats will
have to be converted to it.

Parameters

* input_file_or_name (str) — Path to a data set file or a title for a supported data set
(see Data sets).

e data_format (str, optional) — Format used to store data set (see Custom data
sets).

* title(str, optional)- Title of data set for use in, e.g., plots.
* specifications (dict, optional)- Metadata for data set.

* values (2-d NumPy array, optional)—Matrix for (count) values with rows rep-
resenting examples/cells and columns features/genes.

* labels (I1-d NumPy array, optional) - List of labels for examples/cells in the
same order as for values.

* example_names (I-d NumPy array, optional) — List of names for exam-
ples/cells in the same order as for values.

 feature_names (I-d NumPy array, optional) — List of names for fea-
tures/genes in the same order as for values.

* batch_indices (1-d NumPy array, optional) - List of batch indices for ex-
amples/cells in the same order as for values.

* feature_selection (1ist, optional)— Method and parameters for feature se-
lection in a list.

* example_filter (list, optional)-Method and parameters for example filtering
in a list.

* preprocessing methods (list, optional) — Ordered list of preprocessing
methods applied to (count) values: "normalise" (each feature/gene), "log", and
"eXp ".

* directory (str, optional)- Directory where data set is saved.

name
Short name for data set used in filenames.

title
Title of data set for use in, e.g., plots.

specifications
Metadata for data set. If a JSON file was provided, this would contain the contents.

1.3. Programming Interface 9

scVAE, Release 2.1.4

data_format
Format used to store data set.

terms
Dictionary of terms to use for, e.g., "example" (cell), "feature" (gene), and "class" (cell type).

values
Matrix for (count) values with rows representing examples/cells and columns features/genes.

labels
List of labels for examples/cells in the same order as for values.

example_names
List of names for examples/cells in the same order as for values.

feature_ names
List of names for features/genes in the same order as for values.

batch indices
List of batch indices for examples/cells in the same order as for values.

number_ of_ examples
The number of examples/cells.

number of features
The number of features/genes.

number of classes
The number of classes/cell types.

feature_selection_method
The method used for selecting features.

feature_selection_parameters
List of parameters for the feature selection method.

example filter_method
The method used for filtering examples.

example_filter_parameters
List of parameters for the example filtering method.

kind
The kind of data set: "full", "training", "validation",or "test".

version
The version of the data set: "original", "reconstructed", orlatent ("z" or "y").

property number_ of values
Total number of (count) values in matrix.

load ()
Load data set.

split (method=None, fraction=None)
Split data set into subsets.

The data set is split into a training set to train a model, a validation set to validate the model during training,
and a test set to evaluate the model after training.

Parameters

* method (str, optional)-—The method touse: "random" or "sequential”.

10 Chapter 1. Contents

scVAE, Release 2.1.4

e fraction (float, optional) — The fraction to use for training and, optionally,
validation.

Returns Training, validation, and test sets.

clear ()
Clear data set.

1.3.2 Models module

class scvae.models.VariationalAutoencoder (feature_size, latent_size=None,
hidden_sizes=None, reconstruc-
tion_distribution=None, num-
ber_of _reconstruction_classes=None,
latent_distribution=None, mini-
batch_normalisation=None,
batch_correction=None, num-
ber_of _batches=None, num-

ber_of warm_up_epochs=None,
log_directory=None, **kwargs)
Variational auto-encoder class.

Parameters
* feature_size (int)— The number of features/genes in the data set to model.
* latent_size (int) - The number of dimensions to use for the latent space.

* hidden_sizes (1ist (int)) — A list of the number of units in each hidden layer of
both the inference (encoder) and the generative (decoder) networks. The number of layers
in each network is thus the length of this list. For the inference network, the order of the
hidden layers is the same as for the list, while for the generative network, it is the reverse.

* reconstruction_distribution (str, optional) — The name of the recon-
struction distribution (or likelihood function; see Training a model)

* number of reconstruction_classes (int, optional) — The number of
counts to model directly, starting from zero (see Training a model).

* latent_distribution (str, optional)— The name of the latent prior distribu-
tion: "gaussian" or "unit_variance_gaussian" (see Training a model).

* minibatch_normalisation (bool, optional) - If True, normalise each ran-
dom minibatch of data when training or evaluating the model.

* batch_correction (bool, optional)-If True, and if batches are present in data
set to model, perform batch correction.

* number of_batches (int, optional)- The number of batches in the data set to
model. Required, if batch_correctionis True.

* number_of_warm_up_epochs (int, optional)— The number of epochs during
the start of training with a linear weight on the KL divergence. This weight is gradually
increased linearly from O to 1 for this number of epochs.

* log_directory (str, optional)- Directory where model is saved.

feature_size
The number of features/genes which can be modelled.

1.3. Programming Interface 11

scVAE, Release 2.1.4

latent_size
The number of dimensions of the latent space.

hidden_sizes
A list of the number of units in each hidden layer of both the inference (encoder) and the generative
(decoder) networks. The number of layers in each network is thus the length of this list. For the inference
network, the order of the hidden layers is the same as for the list, while for the generative network, it is the
reverse.

reconstruction_distribution
An instance of the reconstruction distribution (or likelihood function) class used by the model.

number of reconstruction_ classes
The number of counts modelled directly, starting from zero.

latent_distribution
An instance of the latent prior distribution class used by the model.

minibatch normalisation
If True, normalise each random minibatch of data when training or evaluating the model.

batch_correction
If True, and if batches are present in data set to model, perform batch correction.

number of batches
The number of batches in the data set to model, when batch_correctionis True.

number_ of_ warm_up_epochs
The number of epochs during the start of training with a linear weight on the KL divergence. This weight
is gradually increased linearly from O to 1 for this number of epochs.

property name
Short name for model used in filenames.

property description
Description of model.

property parameters
Trainable parameters in the model.

train (training_set, validation_set=None, number_of_epochs=None, minibatch_size=None, learn-
ing_rate=None, run_id=None, new_run=None, reset_training=None, **kwargs)
Train model.

Parameters
* training_set (DataSet)— Data set used to train model.

* validation_set (DataSet, optional)-— Data setused to validate model during
training, if given.

* number_of_epochs (int, optional)-—The number of epochs to train the model.

e minibatch_size (int, optional) - The size of the random minibatches used at
each step of training.

* learning_rate (float, optional)- The learning rate used at each step of train-
ing.

e run_id (str, optional)-ID used to identify a certain run of the model.

* new_run (bool, optional)-If True, train a model anew as a separate run with an
automatically generated ID.

12

Chapter 1. Contents

scVAE, Release 2.1.4

* reset_training (bool, optional)— If True, reset model by removing saved
parameters for the model.

sample (sample_size=None, minibatch_size=None, run_id=None, use_early_stopping_model=False,

use_best_model=Fualse)
Sample from trained model.

Parameters
* sample_size (int, optional)- The number of samples to draw from the model.

e minibatch_size (int, optional) - The size of the random minibatches used at
each step of training.

e run_id (str, optional)-ID used to identify a certain run of the model.

* use_early_ stopping _model (bool, optional)-If True, use model param-
eters, when early stopping triggered during training. Defaults to False.

* use_best_model (bool, optional)-If True, use model parameters, which re-
sulted in the best performance on validation set during training. Defaults to False.

Returns A data set of generated examples/cells as well as a dictionary of data sets of samples
for the two latent variables.

evaluate (evaluation_set, minibatch_size=None, run_id=None, use_early_stopping_model=False,

use_best_model=False, **kwargs)
Evaluate trained model

Parameters
¢ evaluation_set (DataSet)— Data set used to evaluate model.

e minibatch_size (int, optional) - The size of the random minibatches used at
each step of training.

e run_id (str, optional)-ID used to identify a certain run of the model.

* use_early_stopping_model (bool, optional)—If True, use model param-
eters, when early stopping triggered during training. Defaults to False.

* use_best_model (bool, optional)—If True, use model parameters, which re-
sulted in the best performance on validation set during training. Defaults to False.

Returns A data set of reconstructed examples/cells as well as a data set
of the latent variable (wrapped in a dictionary for compatibility with
GaussianMixtureVariationalAutoencoder).

1.3. Programming Interface

13

scVAE, Release 2.1.4

class scvae.models.GaussianMixtureVariationalAutoencoder (feature_size, la-
tent_size=None, hid-
den_sizes=None,
reconstruc-
tion_distribution=None,
num-
ber_of _reconstruction_classes=None,
la-
tent_distribution=None,
prior_probabilities_method=None,
prior_probabilities=None,
num-
ber_of latent_clusters=None,
mini-
batch_normalisation=None,
batch_correction=None,
num-
ber_of _batches=None,
num-
ber_of_warm_up_epochs=None,
log_directory=None,
*rkwargs)

Gaussian-mixture variational auto-encoder class.

Parameters
* feature_size (int)— The number of features/genes in the data set to model.
* latent_size (int) - The number of dimensions to use for the latent space.

* hidden_sizes (1ist (int)) — A list of the number of units in each hidden layer of
both the inference (encoder) and the generative (decoder) networks. The number of layers
in each network is thus the length of this list. For the inference network, the order of the
hidden layers is the same as for the list, while for the generative network, it is the reverse.

e reconstruction_distribution (str, optional) — The name of the recon-
struction distribution (or likelihood function; see Training a model)

* number_ of_ reconstruction_classes (int, optional) — The number of
counts to model directly, starting from zero (see Training a model).

* latent_distribution (str, optional)— The name of the latent prior distribu-
tion: "gaussian_mixture" or "full_covariance_gaussian_mixture" (see
Training a model).

* prior_probabilities_method (str, optional)— Method for how to set the
mixture coefficients for the latent prior distribution: "uniform" distribution, "custom"
(provide probabilities to prior_probabilities),or "learn" during training.

* prior_probabilities (I1-d array-like, optional)— Prior probabilities re-
quired when prior_probabilities_methodis "custom".

e number of_ latent_clusters (int, optional)- The number of latent clusters,
which is also the number of components in the Gaussian-mixture model.

* minibatch_normalisation (bool, optional) - If True, normalise each ran-
dom minibatch of data when training or evaluating the model.

* batch_correction (bool, optional)-If True, and if batches are present in data
set to model, perform batch correction.

14 Chapter 1. Contents

scVAE, Release 2.1.4

e number_ of_batches (int, optional)- The number of batches in the data set to
model. Required, if batch_correctionis True.

* number_ of warm_up_epochs (int, optional) - The number of epochs during
the start of training with a linear weight on the KL divergence. This weight is gradually
increased linearly from O to 1 for this number of epochs.

* log_directory (str, optional)— Directory where model is saved.

feature_size
The number of features/genes which can be modelled.

latent_size
The number of dimensions of the latent space.

hidden_sizes
A list of the number of units in each hidden layer of both the inference (encoder) and the generative
(decoder) networks. The number of layers in each network is thus the length of this list. For the inference
network, the order of the hidden layers is the same as for the list, while for the generative network, it is the
reverse.

reconstruction_distribution
An instance of the reconstruction distribution (or likelihood function) class used by the model.

number of reconstruction classes
The number of counts modelled directly, starting from zero.

latent_distribution
An instance of the latent prior distribution class used by the model.

prior_probabilities_method
Method for how the mixture coefficients for the latent prior distribution are set: "uniform" distribution,
"custom" (given by prior_probabilities),or "learn" during training.

prior_probabilities
Prior probabilities when prior_probabilities_methodis "custom".

minibatch normalisation
If True, normalise each random minibatch of data when training or evaluating the model.

batch_correction
If True, and if batches are present in data set to model, perform batch correction.

number of batches
The number of batches in the data set to model, when batch_correctionis True.

number_ of_ warm_up_epochs
The number of epochs during the start of training with a linear weight on the KL divergence. This weight
is gradually increased linearly from O to 1 for this number of epochs.

property name
Short name for model used in filenames.

property description
Description of model.

property parameters
Trainable parameters in the model.

property number_of latent_clusters
The number of latent clusters used in the model.

1.3. Programming Interface 15

scVAE, Release 2.1.4

train (training_set, validation_set=None, number_of_epochs=None, minibatch_size=None, learn-
ing_rate=None, run_id=None, new_run=False, reset_training=False, **kwargs)
Train model.

Parameters
* training_set (DataSet) — Data set used to train model.

* validation_set (DataSet, optional)— Data setused to validate model during
training, if given.

* number_of_epochs (int, optional)-The number of epochs to train the model.

e minibatch_size (int, optional) - The size of the random minibatches used at
each step of training.

* learning rate (float, optional)- The learning rate used ateach step of train-
ing.

* run_id (str, optional)-ID used to identify a certain run of the model.

* new_run (bool, optional)-If True, train a model anew as a separate run with an
automatically generated ID.

* reset_training (bool, optional) - If True, reset model by removing saved
parameters for the model.

sample (sample_size=None, minibatch_size=None, run_id=None, use_early_stopping_model=False,

use_best_model=False)
Sample from trained model.

Parameters
e sample_size (int, optional)- The number of samples to draw from the model.

* minibatch_size (int, optional) - The size of the random minibatches used at
each step of training.

e run_id (str, optional)-ID used to identify a certain run of the model.

* use_early_ stopping _model (bool, optional)-If True, use model param-
eters, when early stopping triggered during training. Defaults to False.

* use_best_model (bool, optional)-If True, use model parameters, which re-
sulted in the best performance on validation set during training. Defaults to False.

Returns A data set of generated examples/cells as well as a dictionary of data sets of samples
for the two latent variables.

evaluate (evaluation_set, minibatch_size=None, run_id=None, use_early_stopping_model=False,

use_best_model=False, **kwargs)
Evaluate trained model

Parameters
* evaluation_set (DataSet)— Data set used to evaluate model.

e minibatch_size (int, optional) - The size of the random minibatches used at
each step of training.

e run_id (str, optional)-ID used to identify a certain run of the model.

* use_early_ stopping _model (bool, optional)-If True, use model param-
eters, when early stopping triggered during training. Defaults to False.

16 Chapter 1. Contents

scVAE, Release 2.1.4

* use_best_model (bool, optional)-If True, use model parameters, which re-
sulted in the best performance on validation set during training. Defaults to False.

Returns A data set of reconstructed examples/cells as well as a dictionary of data sets of the two
latent variables.

1.3.3 Analyses module

scvae.analyses.analyse_data (data_sets, decomposition_methods=None, high-

light_feature_indices=None, analyses_directory=None, **kwargs)
Analyse data set and save results and plots.

Parameters
* data_sets (list (DataSet))— List of data sets to analyse.

* decomposition_methods (str or list (str))— Method(s) used to decompose
data set values: "PCA™", "SVD", "ICA", and/or "t-SNE".

* highlight_feature_indices (int or list (int)) - Index or indices to high-
light in decompositions.

* analyses_directory (str, optional)- Directory where to save analyses.

scvae.analyses.analyse_model (model, run_id=None, analyses_directory=None, **kwargs)
Analyse trained model and save results and plots.

Parameters
* model ((GaussianMixture)VariationalAutoencoder)— Model to analyse.
* run_id (str, optional)-ID used to identify a certain run of model.

* analyses_directory (str, optional)- Directory where to save analyses.

scvae.analyses.analyse_intermediate_results (epoch, learning_curves=None,
epoch_start=None, model_type=None,
latent_values=None, data_set=None,
centroids=None, model_name=None,

run_id=None, analyses_directory=None)
Analyse reconstructions and latent values.

Reconstructions and latent values from evaluating a model on a data set are analysed, and results and plots are
saved.

Parameters
* evaluation_set (DataSet) — Data set used to evaluate model.

e reconstructed_evaluation_set (DataSet) — Reconstructed data set from eval-
uating model on evaluation_set.

* latent_evaluation_sets (dict (str, DataSet)) — Dictionary of data sets of
the two latent variables.

* model ((GaussianMixture)VariationalAutoencoder) — Model evaluated on
evaluation_set.

* run_id (str, optional)-ID used to identify a certain run of model.

* sample_reconstruction_set (DataSet)— Reconstruction data set from sampling
model.

1.3. Programming Interface 17

scVAE, Release 2.1.4

* decomposition_methods (str or 1list (str))— Method(s) used to decompose

data set values: "PCA", "SVD", "ICA", and/or "t-SNE".

* highlight_feature_indices (int or list (int)) - Index or indices to high-
light in decompositions.

* early_stopping (bool,
early stopping triggered during training. Defaults to False.

* best_model (bool,

optional) — If True, use parameters for model, when

optional) — If True, use parameters for model, which re-

sulted in the best performance on validation set during training. Defaults to False.

* analyses_directory (str,

1.3.4 Argument defaults

Below are listed the defaults for some optional arguments:

optional) - Directory where to save analyses.

{

"data":

by

{

"format": "infer",
"directory": "data",
"map_features": false,
"feature_selection": [],
"example_filter": [],
"preprocessing_methods": [],
"noisy_preprocessing_methods": [],
"split_data_set": false,
"splitting_method": "default",
"splitting_fraction": 0.9

"analyses": {

by

"models":

"directory": "analyses",
"decomposition_method": "PCA",
"decomposition_dimensionality": 2,
"highlight_feature_indices": [],
"included_analyses": "standard",
"analysis_level": "normal",
"export_options": []

{
"directory": "models",
"type": "VAE",
"latent_size": 2,
"hidden_sizes": [100],
"number_of_samples": {
"training": 1,
"evaluation": 1
}I
"latent_distribution": {
"VAE": "gaussian",
"GMVAE": "gaussian mixture"
}I

"number_of_classes": 1,

"parameterise_latent_posterior": false,

"inference_architecture": "MLP",
"generative_architecture": "MLP",

"reconstruction_distribution": "poisson",

(continues on next page)

18

Chapter 1. Contents

scVAE, Release 2.1.4

(continued from previous page)

"number_of_reconstruction_classes": 0,
"prior_probabilities_method": "uniform",
"number_of_warm_up_epochs": 0,

"kl _weight": 1,

"proportion_of_ free_nats_for_y_kl_divergence": 0.0,
"minibatch_normalisation": true,
"batch_correction": false,
"dropout_keep_probabilities": [1],

"count_sum": false,

"number_of_epochs": 200,

"minibatch_size": 100,

"learning_rate": le—4,

"sample_size": 0,

"run_id":
"new_run": false,

nn
’

"reset_training": false

}V

"evaluation": {
"data_set_kind": "test",
"prediction_training_set_kind": "training",
"prediction_method": "",
"model_versions": "all"

}V

"cross_analysis": {
"log_summary": false

1.4 References

Christopher Heje Grgnbech, Maximillian Fornitz Vording, Pascal N. Timshel, Casper Kaae Sgnderby, Tune H. Pers,
and Ole Winther (2020). “scVAE: Variational auto-encoders for single-cell gene expression data”. Bioinformatics,
btaa293. Diederik P. Kingma and Max Welling (2014). “Auto-encoding variational Bayes”. Proceedings of the 2nd
International Conference on Learning Representations (ICLR). Diederik P. Kingma and Jimmy Ba (2015). “Adam:
A method for stochastic optimization”. Proceedings of the 3rd International Conference on Learning Representations
(ICLR). Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra (2014). “Stochastic backpropagation and
approximate inference in deep generative models”. In: Xing, E.P. and Jebara, T. (eds.), Proceedings of the 31st
International Conference on Machine Learning, volume 32 of Proceedings of Machine Learning Research, PMLR,
pp- 1278-1286.

1.4. References 19

https://doi.org/10.1093/bioinformatics/btaa293
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1401.4082
https://arxiv.org/abs/1401.4082

scVAE, Release 2.1.4

20 Chapter 1. Contents

PYTHON MODULE INDEX

S

scvae.analyses, 17
scvae.data, 9
scvae.models, 11

21

scVAE, Release 2.1.4

22 Python Module Index

A

analyse_data () (in module scvae.analyses), 17

analyse_intermediate_results () (in module
scvae.analyses), 17

analyse_model () (in module scvae.analyses), 17

B

batch_correction (sc-

INDEX

feature_selection_method (scvae.data.DataSet
attribute), 10
feature_selection_parameters
vae.data.DataSet attribute), 10
feature_size (scvae.models. GaussianMixtureVariational Autoencoder
attribute), 15
feature_size (scvae.models.VariationalAutoencoder
attribute), 11

(sc-

vae.models.GaussianMixtureVa riationalAutoenco@

attribute), 15

batch_correction (sc-
vae.models.VariationalAutoencoder attribute),
12

batch_indices (scvae.data.DataSet attribute), 10

C

clear () (scvae.data.DataSet method), 11

D

data_format (scvae.data.DataSet attribute), 9
DatasSet (class in scvae.data), 9

description () (sc-

vae.models.GaussianMixtureVariationalAutoenco.

property), 15

description () (sc-
vae.models.VariationalAutoencoder property),
12

E

GaussianMixtureVariationalAutoencoder
(class in scvae.models), 13

H

hidden_sizes (scvae.models. GaussianMixture Variational Autoencoder
attribute), 15

hidden_sizes (scvae.models.VariationalAutoencoder
attribute), 12

K

kind (scvae.data.DataSet attribute), 10

kor

labels (scvae.data.DataSet attribute), 10

latent_distribution (sc-
vae.models.GaussianMixtureVariational Autoencoder
attribute), 15

latent_distribution (sc-
vae.models. VariationalAutoencoder attribute),

evaluate () (scvae.models.GaussianMixtureVariati onalAutoencodey?

method), 16
evaluate () (scvae.models.VariationalAutoencoder
method), 13
example_filter_method (scvae.data.DataSet at-
tribute), 10
example_filter_ parameters
vae.data.DataSet attribute), 10
example_names (scvae.data.DataSet attribute), 10

F

feature_names (scvae.data.DataSet attribute), 10

(sc-

latent_size (scvae.models.GaussianMixtureVariational Autoencoder
attribute), 15

latent_size (scvae.models.VariationalAutoencoder
attribute), 11

load () (scvae.data.DataSet method), 10

M

minibatch_normalisation (sc-
vae.models.GaussianMixtureVariational Autoencoder
attribute), 15

23

scVAE, Release 2.1.4

minibatch_normalisation (sc-
vae.models.VariationalAutoencoder attribute),
12
module
scvae.analyses, 17
scvae.data, 9
scvae.models, 11

N

name (scvae.data.DataSet attribute), 9

attribute), 15

R

reconstruction_distribution (sc-
vae.models.GaussianMixtureVariational Autoencoder
attribute), 15
reconstruction_distribution (sc-
vae.models. VariationalAutoencoder attribute),
12

name () (scvae.models. GaussianMixtureVariationalAutoen(Sder

property), 15
(scvae.models. VariationalAutoencoder prop-

erty), 12
number_of_batches

name ()

(sc-

sample () (scvae.models.GaussianMixtureVariationalAutoencoder

vae.models.GaussianMixtureVariationalAutoencodggae . analyses

attribute), 15
number_of_batches (sc-
vae.models.VariationalAutoencoder attribute),
12
number_of_classes (scvae.data.DataSet attribute),
10
number_of_examples
tribute), 10
number_of_ features
tribute), 10
number_of_latent_clusters ()

(scvae.data.DataSet at-
(scvae.data.DataSet at-

(sc-

vae.models.GaussianM ixtureVariatianalAutoencméEf’a in

property), 15

number_of_ reconstruction_classes (sc-

vae.models.GaussianMixtureVariationalAutoencoder

attribute), 15
number_of_reconstruction_classes (sc-
vae.models. VariationalAutoencoder attribute),

12
number_of_values () (scvae.data.DataSet prop-
erty), 10

number_of_warm_up_epochs (sc-

method), 16
sample () (scvae.models.VariationalAutoencoder
method), 13
module, 17
scvae.data
module, 9

scvae.models

module, 11
specifications (scvae.data.DataSet attribute), 9
split () (scvae.data.DataSet method), 10

T

terms (scvae.data.DataSet attribute), 10
title (scvae.data.DataSet attribute), 9
() (scvae.models.GaussianMixtureVariational Autoencoder
method), 15
(scvae.models.VariationalAutoencoder
method), 12

train ()

\Y

values (scvae.data.DataSet attribute), 10
VariationalAutoencoder (class in scvae.models),
11

version (scvae.data.DataSet attribute), 10

vae.models.GaussianMixtureVariational Autoencoder

attribute), 15

number_of_warm_up_epochs (sc-
vae.models.VariationalAutoencoder attribute),
12

P

parameters () (scvae.models.GaussianMixtureVariationalAutoencoder

property), 15

parameters () (scvae.models.VariationalAutoencoder

property), 12

prior_probabilities (sc-

vae.models.GaussianMixtureVariationalAutoencoder

attribute), 15

prior_probabilities_method (sc-

vae.models.GaussianMixtureVariationalAutoencoder

24

Index

	Contents
	User Guide
	Installing scVAE
	Using scVAE
	Data sets
	Training a model
	Evaluating a model
	Examples

	Tutorial

	License
	Programming Interface
	Data module
	Models module
	Analyses module
	Argument defaults

	References

	Python Module Index
	Index

